Generalization Bounds for Weighted Automata
نویسندگان
چکیده
This paper studies the problem of learning weighted automata from a finite labeled training sample. We consider several general families of weighted automata defined in terms of three different measures: the norm of an automaton’s weights, the norm of the function computed by an automaton, or the norm of the corresponding Hankel matrix. We present new data-dependent generalization guarantees for learning weighted automata expressed in terms of the Rademacher complexity of these families. We further present upper bounds on these Rademacher complexities, which reveal key new data-dependent terms related to the complexity of learning weighted automata.
منابع مشابه
Generalization bounds for learning weighted automata
This paper studies the problem of learning weighted automata from a finite sample of strings with real-valued labels. We consider several hypothesis classes of weighted automata defined in terms of three different measures: the norm of an automaton’s weights, the norm of the function computed by an automaton, and the norm of the corresponding Hankel matrix. We present new data-dependent general...
متن کاملComplementation and Inclusion of Weighted Automata on Infinite Trees
Weighted automata can be seen as a natural generalization of finite state automata to more complex algebraic structures. The standard reasoning tasks for unweighted automata can also be generalized to the weighted setting. In this report we study the problems of intersection, complementation and inclusion for weighted automata on infinite trees and show that they are not harder than reasoning w...
متن کاملSpectral Learning of General Weighted Automata via Constrained Matrix Completion
Many tasks in text and speech processing and computational biology require estimating functions mapping strings to real numbers. A broad class of such functions can be defined by weighted automata. Spectral methods based on the singular value decomposition of a Hankel matrix have been recently proposed for learning a probability distribution represented by a weighted automaton from a training s...
متن کاملTight Bounds using Hankel Matrix for Arithmetic Circuits with Unique Parse Trees
This paper studies lower bounds for arithmetic circuits computing (non-commutative) polynomials. Our conceptual contribution is an exact correspondence between circuits and weighted automata: algebraic branching programs are captured by weighted automata over words, and circuits with unique parse trees by weighted automata over trees. The key notion for understanding the minimisation question o...
متن کاملComplementation and Inclusion of Weighted Automata on Infinite Trees: Revised Version
Weighted automata can be seen as a natural generalization of finite state automata to more complex algebraic structures. The standard reasoning tasks for unweighted automata can also be generalized to the weighted setting. In this report we study the problems of intersection, complementation, and inclusion for weighted automata on infinite trees and show that they are not harder complexity-wise...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1610.07883 شماره
صفحات -
تاریخ انتشار 2016